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Consider the second-order differential equation 

2 = f(Z, 2) (0.1) 

where the function f(x, i) is supposed to be continuous for x < B. The 
problem in question consists in the determination of sufficient condi- 
tions to be imposed on the right-hand side of Equation (0.1) in order 
that every continuously differentiable solution of this equation with 
initial value x0 such that 

xo<R, -~w<&J<oo for t = to (0.2) 

remains bounded by the quantity B, i.e. 

x<B for to<t<co (0.3) 

If the initial conditions are of such a nature that the speed i is 
large, while the difference B - L is small. then in order to insure the 
boundedness one requires large (but finite) accelerations which are 
oppositely directed to the initial velocity. Hence, even in the absence 
of powerful sources of energy in a system which is governed by Equation 
(0.1). the required accelerations may still be produced by means of a 
suitable arrangement of regulators. A typical example of these are 
hydraulic brakes. In the case of brakes, these systems may be approxi- 
mately described by means of equations with singularities [ 1 1. Sharp 
brakes of the impact type may not, however, produce favorable effects on 
the system. The properties of the equation which are analysed below allow 
for the choice of the regulatory system in such a way that the braking 
begins gradually and proceeds smoothly, while the regulated quantity 
does not surpass the preassigned limit. 
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Consider the phase space xx. For t > to the representative Point may 
fall on the line x = B only in the upper half-plane. If the Solutions of 
Equation (0.1) with initial conditions lying in the domain D 

B - e<xo<B, o<,<- (&x9 (0.4) 

are bounded by the number B, then all solutions of Equation (0.1) for 
arbitrary initial conditions (0.2) are also bounded. 

Let the initial conditions (x,, i,) E D be given. In view of the con- 
tinuity of the function f(r, i), the solutions of Equation (0.1) may be 
extended as far as the boundary of the domain D [ 2 1. The portions of the 
trajectories of Equation (0.1) lying in D may be of the following types. 

1) It happens that 2 + m as x + X* Q B. These solutions are defined 
only on a finite interval to < t < T and are not continuously differ- 
entiable at t = T. These solutions, although bounded. will not be con- 
sidered here. 

2) The trajectory crosses the straight line x = B for ; > 0. The cor- 
responding solutions are not bounded above by the number B. 

3) The trajectory crosses the straight line z = B for X = 0. The cor- 
responding solutions may or may not be bounded (this situation is con- 
sidered in item 4 below). 

4) The trajectory crosses the axis of abscissas for x < B. If this 
happens for an arbitrary initial point of the domain D, then the solu- 
tions of Equation (0.1) never exceed the number B. Below, we determine 
sufficient conditions for this to occur. 

1. Consider the equation of phase trajectories of the form 

(1.1) 

where the function g(x, ;) is continuous on the domain D. If, further, 
this equation satisfies the conditions for the existence of a solution 
at a boundary point (I,, = B, i, > 0). then through this point passes an 
integral curve which is defined on a certain interval to the left of the 
straight line z = B [ 3 I, 

Thus, the required boundedness condition consists in the non-satis- 
faction, for x = B, i > 0. of the hypotheses of all existence theorems. 
It is easy to prove the following non-existence theorem, which furnishes 
a sufficient condition for boundedness. 

Theorem I. Suppose that the right-hand side of Equation (1.1) is 
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continuous for x < B. If there exists a function R(X) such that 

n 

hIhI., (x) = 00, s VL (z)dx= M for q>O 
B-fl 

/ g (2, &) 1 > n2 (X) for I: >, 0 

(1.2) 

(1.3) 

then there does not exist any continuous integral curve of Equation (1.1) 
passing through the point (B, io & 0). and which is defined for x < B. 

If f(r* ;) > 0, then the phase trajectories approach infinity. because 
in this case we obtain the following necessary condition for boundedness: 

I’@,,)-+ --cx3 for X’B (k > 0) 

On the other hand, the second derivative ;i is bounded along any tra- 
jectory, because x < B. 

If the condition (1.3) of the theorem holds only for ; > 0, then the 
phase trajectories do not intersect the straight line x = 8 for ; > 0. 
but may intersect it for ; = 0. The question of the boundedness of the 
solutions in this case requires further considerations (see item 4). 

2. Let us introduce, in the equation of the phase trajectories, ; as 
the independent variable and x as the dependent variable. Then we obtain 
the equation 

dx 1 I-- 
dk--g(x,k) (2.1) 

This equation may have the trivial solution x = B; the remaining 
integral curves of Equations (1.1) and (2.1) coincide. If the solution 
x = B, for ; a 0. of (2.1) is unique, then the integral curves which pass 
through points (x0 < B, ia ,I 0) cannot intersect the solution x = B, and 
hence must be bounded, This proves the following theorem. 

Theorem 2. If Equation (2.1) possesses the unique solution z: = B. for 
; 2 0, then the solutions of Equation (0.1) are bounded by B. 

It should be noticed that many of the known sufficient conditions for 
uniqueness are too strong for the problem under consideration, because 
we do not need the uniqueness of every solution, but only the uniqueness 
of the trivial solution. For example, from the method of proof of exist- 
ence and uniqueness based on the Lipschitz condition [4 1. it follows 
that the trivial solution of (2.1) will be unique provided that 
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3. Many uniqueness conditions are based on a comparison of the given 

equation with other equations which satisfy certain prescribed conditions. 
Let us employ this method of comparison in order to solve the boundedness 

problem. 

Theorem 3. If there exists a family of continuously differentiable 
curves, for ; > 0 

P = cf, (5, C) (3.1) 

which fill up completely the domain D and do not intersect the half-line 

L(x= B, ; 201, and 

(3.2) 

then the integral curves of the equation 

dP/dx=g(x, k) (3.3) 

do not intersect the half-line L. 

Indeed, the function g(x, i) is continuous in the domain D. Then, the 
conclusion of chaplygin’s theorem on differential inequalities [ 5 1 is 
applicable, i.e. a solution of Equation (3.3) in the domain D lies 
strictly below the corresponding solution of Equation (3.1) having the 
same initial conditions. For i = 0 they may intersect; Since all curves 

of the family (3.1) intersect the axis of abscissas for x < B, it follows 
that the solutions of Equation (3.1) cannot intersect the half-line L. 

In particular, the family Qx, 0 may form part of the family of 
integral curves of a differential equation 

dk/dx=F(x,&), F (x, k) > g @A 3) (3.4) 

Let us consider the special case when 

where F1 (L), F2(1s) are continuous functions, and 

F1(z)>O for x<B, F1(x)>O for a=-B 

F,(&)>O for k>O, Fz(k)>O for k=O 

The equation of the family of curves is 

d& * dx 

i- s- ,. Fa (*) + 
XP 

x0& (4 = ’ 

(3.5) 

(3.6) 



870 A. B. Savvin 

The integral curves will not intersect the half-line L if 

B 
dx ’ dk 

B_em=OQ7 s s- Fz (k) < O” (E>% S>o) 
0 

(3.7) 

The sufficient conditions obtained are quite general; for example, 
Theorem 1 follows from the comparison theorem upon choosing 

1 
m (4 = Fl(z) 9 Fz (5) = 1 

4. Let us now suppose that the integral curves intersect the straight 
line x = B. If the intersection is arbitrary for r > 0. then the solution 
x(t) will attain the value x = B at some finite instant of time T, which 
contradicts the requirement (0.3). Further, the integral curve cannot be 
prolonged continuously for t > T while at the same time remaining bounded 

by B. 

Suppose now that an integral curve of Equation (1.11, i = 4(z), inter- 
sects the straight line x = B for X = 0. that the curve passes through 
the point (B. 0) and that it possesses a well-defined tangent there, i.e. 
that the following limit exists (finite or infinite): 

‘p’ (I?) = lim IB 
s+B x--B 

If this derivative is finite, i.e. the integral curve issues from the 
point (B, 0) at an angle which differs from a right angle, then the time 
spent by the representative point in reaching the point (B. 0) is in- 
finite: 

B 

Thus, the required condition (0.3) holds. 
. . 
X’ id$/dx along the integral curves is also 
as z = B. 

Let us now prove the following comparison theorem. 

Theorem 4. Suppose that in the domain D 

where the function F(x, i) is continuous and negative in D. and the solu- 
tions of the equation 

ci! = dF (x, k) 

(4.21 

The second derivative 
bounded and approaches zero 

(4.3) 

(4.4) 
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are bounded, for arbitrary initial conditions (x,, ;,l E L), 

xp(i)<B for to<t<cu (4.5) 

Then the solutions of Equation (0.1) have the same properties. 

Indeed, the integral curves used for comparison are monotone, since 

F(X, i) is negative. Since the solutions of Equation (4.4) are bounded, 
the integral curves of this equation either intersect the axis of 
abscissas for x < B or they pass through the point (B. 0) at an acute 
angle. According to Chaplygin’ s theorem, the integral curves of Equation 
(0.1) in the domain D lie strictly below the corresponding integral 
curves of comparison. Hence. the representative point, which moves on an 
integral curve of EqUstiOn CO. 1). cannot reach the straight line x = B 
in a finite time. consequently, all solutions of Equation (0. I) are 
bounded, 

The comparison theorem can be used very conveniently when the right- 
hand side is the quotient of two functions. as in (3.51. In addition to 
Equation (3.71, introduced in the last section, let us consider other 
conditions which guarantee that the solutions of (0.1) are bounded. 

If 
Fl 

!i dx n d2 
Flqzj=*oo’ 5 m=* (e>R rl>Of 

B--t 0 

(4.6) 

then the integral curves of Equation (4.4) pass through the point (B, 0) 

without intersecting the straight line x = B for ; > 0. In order that 
(0.3) be satisfied, the integral curves must pass the point (B, 0) at an 
angle different from a right angle. 

Filippov [ 6 1 gave sufficient conditions in order that an equation of 
the form dy/dx = g(y)/h(x) has no solution for which y(O) = 0, y’(O) = 0, 
y(x) + 0. Employing his results, it is easy to determine under what 
circumstances Equations (3.61, (3.51, subject to the conditions (4.61, 
have no solutions for which i(O) = 0 and d;/dx = 00 for x = 0. 

In addition to equations whose variables are separable. one may use 
as comparison equations other types of equations with bounded solutions. 
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